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Abstract

It is well known that T-matrix computations of light scattering by nonspherical particles may suffer from the ill-conditionality
of the process of matrix inversion, which has precluded calculations for particle size parameters larger than about 25. It is
demonstrated that calculating the T-matrix using extended-precision instead of double-precision floating-point variables is an
effective approach for suppressing the numerical instability in computations for spheroids and allows one to increase the maxi-
mum particle size parameter for which T-matrix computations converge by as significant a factor as 2-2.7. Yet this approach
requires only a negligibly small extra memory, an affordable increase in CPU time consumption, and practically no additional
programming effort. As a result, the range of particle size parameters, for which rigorous T-matrix computations of spheroidal
scattering can be performed, now covers a substantial fraction of the gap between the domains of applicability of the Rayleigh

and geometrical optics approximations.

It is well known that light scattering by nonspheri-
cal particles much smaller and much larger than a
wavelength of light is well described by the Rayleigh
and geometrical optics approximations, respectively
[1-3]. On the other hand, scattering properties of
particles with sizes comparable to the wavelength (so-
called resonance particles) are complicated func-
tions of the particle size parameter, shape, and re-
fractive index and should be computed by directly
solving Maxwell’s equations. Apparently, the fastest
and most powerful numerical tool for rigorously
computing nonspherical light scattering in the reso-
nance region of size parameters is the T-matrix
method [4]. However, even with this method, com-
putations were rarely reported for size parameters
exceeding 25, which is explained by the numerical in-

stability of the method at higher frequencies. The or-
igin of this numerical instability is discussed in Ref.
[5]. In brief, in the T-matrix method the electric fields
incident on (superscript i) and scattered by (super-
script s) a particle are expanded in series of vector
spherical functions as follows:

Ei(r) = Z [amn Rngn (k") +bmn RgNmn(kr) ] s
(1)
Es(r)= Z [pmann(kr)+qmnNmn(kr)] P (2)
where k=2n/A is a free-space wavenumber and 4 is a
free-space wavelength. The vector spherical func-

tions RgM,,,, and RgN,,,, in Eq. (1) have a Bessel
function radial dependence, while the functions M,,,,,
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and N,,, in Eq. (2) have a Hankel function radial
dependence. The expansion coefficients of the inci-
dent plane wave a,,, and b,,,,, are given by simple an-
alytical expressions (see, ¢.g., Ref. [6]), whereas the
expansion coefficients of the scattered field p,,, and
q.mn are initially unknown. Because of the linearity of
Maxwell’s equations, the relation between the expan-
sion coefficients of the incident and scattered fields
is linear and is given by a transition matrix (or T ma-
trix) T as follows:

HEG!

where compact matrix notations are used. The ele-
ments of the T matrix are independent of the inci-
dent and scattered fields and depend only on the
shape, size parameter, and refractive index of the
scattering particle as well as on its orientation with
respect to the reference frame. Thus, to calculate the
scattered field, the T matrix should be computed be-
forehand for a given scattering particle. The T matrix
can be represented in the form T= —Q~! RgQ, where
the elements of the matrices Q and RgQ can be com-
puted for given particle shape, refractive index, and
size parameter by using formulas derived by Water-
man [4]. Although theoretically the expansions (1)
and (2) and, therefore, the matrices T, Q and RgQ
are of infinite size, in practical computer calculations
they must be truncated to a finite maximum size. This
maximum size depends on the required accuracy of
computations and is determined by increasing the size
of the matrices Q and RgQ in unit steps until some
convergence criteria (like those described in Refs. [7]
and [8]) are satisfied. Unfortunately, calculation of
the inverse matrix Q! is an ill-conditioned process
strongly influenced by round-off errors. The ill-con-
ditioning means that even small numerical errors in
the computed elements of the matrix Q may result in
(very) big errors in the elements of the inverse ma-
trix Q~!. The round-off errors become increasingly
significant with increasing particle size and/or as-
pect ratio and rapidly accumulate with increasing size
of the matrix Q. As a result, for large and/or highly
aspherical particles, for which the convergent size of
the T matrix should be large, T-matrix computations
may become very slowly convergent or even
divergent.

To ameliorate the problem of numerical instability

of the T-matrix method, the so-called iterative ex-
tended boundary condition method (IEBCM) [9]
has recently been developed. However, the numeri-
cal stability of IEBCM is achieved at the expense of a
considerable increase in computer code complexity
and CPU time consumption. As a result, this method
has not been used, to our knowledge, in computa-
tions of nonspherical scattering for large size
parameters.

An alternative method for dealing with the ill-con-
ditioning of the numerical inversion of the matrix Q
is to improve the accuracy with which this matrix is
calculated and inverted. To do that, we calculated the
elements of this matrix and performed the matrix in-
version using extended-precision (REAL°16 and
COMPLEX"32) instead of double-precision
(REAL"8 and COMPLEX"16) floating-point vari-
ables. We performed our calculations on IBM RISC
workstations for which the accuracy of double-preci-
sion and extended-precision variables is approxi-
mately 15 and 31 decimal digits, respectively. Table
1 compares the results obtained using both types of
variables and shows the maximum size parameter for
which convergence within a given accuracy can be
achieved depending on the asphericity of the scatter-
ing particle. The calculations have been carried out
for randomly oriented spheroids using the analytical
orientational averaging method developed in Ref.
[10]. The refractive indices are 1.5+0.02i and
1.092540.248i. The first of these indices is typical
of mineral tropospheric aerosols [11], while the sec-
ond one corresponds to waterice at A=11 pm [12].
The aspect ratio of a spheroid is defined as the ratio
of the major to minor spheroidal semi-axes. The
spheroidal size parameter x; is defined as the wave-
number times the major semi-axis, while the equal-
surface-area-sphere size parameter x is defined as the
wavenumber times the radius of the sphere having
the surface area equal to that of the spheroid. The
convergence criterion is described in detail in Ref.
[8]. The T-matrix computations were considered
convergent if the relative accuracy of computing the
extinction and scattering cross sections was better
than 10~*. The effect of using extended accuracy
variables is also demonstrated in Fig. 1 which shows
the relative accuracy of computing the extinction and
scattering cross sections for randomly oriented pro-
late spheroids as a function of the parameter #,,,,
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Table 1

Maximum convergent equal-surface-area-sphere size parameter
x™2* and spheroidal size parameter x™** for randomly oriented
spheroids with refractive indices 1.5+40.02i and 1.0925+0.248i
and aspect ratios 2, 3, and 4 depending on the type of computer
variables.

Aspect Double precision Extended precision
ratio _— _—
xmax xmax xmax Xmax
s s
1.54+0.02i

Prolate spheroids

2 29 44 61 93

3 10 19 26 49

4 6 13 16 35
Oblate spheroids

2 34 40 76 91

3 15 19 39 50

4 11 14 29 34

1.0925+0.248i
Prolate spheroids

2 34 52 69 105

3 13 24 28 53

4 7 15 17 37
Oblate spheroids

2 41 49 87 104

3 19 24 42 54

4 13 17 29 38

specifying the maximum value of the index # in ex-
pansions (1) and (2). The refractive index of the
spheroids is 1.5+ 0.02i and their equal-surface-area-
sphere size parameter is x=16.

It is readily seen from Table 1 that using extended-
precision variables is indeed a powerful tool enabling
one to increase the maximum convergent size param-
eter by as significant a factor as 2-2.7. Timing tests
performed on an IBM RISC Model 37T workstation
show that the use of extended-precision instead of
double-precision variables slows computations down
by a factor of only 5-6. Taking into account that the
T-matrix method, especially in application to ran-
domly oriented scatterers [8,10], is orders of mag-
nitude faster than any alternative method for rigor-
ously calculating nonspherical scattering, this factor
of 5-6 seems to be a reasonable cost of being able to
compute much bigger nonspherical particles than ever
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Fig. 1. Relative accuracy of computing the extinction and scat-
tering cross sections for randomly oriented prolate spheroids ver-
SUS parameter Anay, specifying the largest value of the index n in
expansions (1) and (2). The spheroidal aspect ratio is 4, the
equal-surface-area-sphere size parameter is x= 16, and the index
of refraction is 1.5+0.02i. The solid and dashed lines show re-
sults obtained using extended-precision and double-precision
variables, respectively.
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before (cf. Refs. [13-22]). An additional advantage
of this approach is that it does not require any addi-
tional programming effort. Also, the use of extended-
precision instead of double-precision variables re-
quires only a negligibly small extra memory. Indeed,
for rotationally symmetric particles the T matrix in
the natural reference frame with the z-axis along the
axis of rotation is composed of n,,,,+ 1 independent
square [ 27, X 215, ] Submatrices corresponding to
different values of the azimuthal mode m [6,7]. Since
these m-submatrices are independent of one another,
they can be successively computed using the same
auxiliary two-dimensional [ 27,,, X 2.y ] array and
then stored in a three-dimensional [ (7.t 1) X
2Mmax X 2hmax | array. If extended-precision instead of
double-precision variables are used to compute big-
ger and/or more aspherical particles, only the small
auxiliary array doubles its size, while the big three-
dimensional array containing already computed T
matrix elements may preserve its type (COM-
PLEX"16 or COMPLEX"8) and, thus, its size.

We have extensively tested the accuracy of our T-
matrix code versus previously published computa-
tions for spheroids [13,16,17,20] and so-called Che-
byshev particles [7]. Since no nonspherical data have
been published for the largest size parameters that our
code can handle, we tested our computations in that
size parameter range versus Mie calculations for
spheres and rigorous inequalities that must be satis-
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fied by any physically correct scattering matrices [23—
25].

To demonstrate the capabilities of the new ap-
proach, Fig. 2 shows the degree of linear polarization
(i.e., the ratio — F,,/F,, of the elements of the scat-
tering matrix [2]) for monodisperse spheres and
surface-area-equivalent randomly oriented oblate
spheroids with the aspect ratio 3. The index of refrac-
tion is 1.5+0.022i. We have chosen linear polariza-
tion for this example because spherical/nonspherical
differences are much more pronounced in polariza-
tion than in intensity. In particular, even the sign of
polarization may be different for spheres and sur-
face-equivalent nonspherical particles of the same re-
fractive index. For spheres, the polarization is shown
as a function of the size parameter kr, where r is the
sphere radius. For the spheroids, the polarization is
displayed as a function of the equal-surface-area-
sphere size parameter x. It is seen that for spheres,
the diagram is essentially a field of sharp local max-
ima and minima resulting from the optical interfer-
ence phenomena for monodisperse particles (cf. Fig.
19 in Ref. [2]). For the highly aspherical randomly
oriented spheroids, the interference structure is much
less pronounced, thus demonstrating the smoothing
effect of averaging over orientations of a nonspheri-
cal particle [13]. It is also seen that for nonspherical
particles, the geometrical optics regime (polarization
is independent of x) may be reached at smaller size
parameters than for surface-equivalent spheres. Ap-
parently, this can be explained by the smoothing ef-
fect of the orientational averaging. The spheroidal
polarization is positive at most scattering angles, es-
pecially for larger size parameters. An interesting fea-
ture of the spheroidal pattern is the bridge of positive
polarization at side-scattering angles, which extends
upwards from the region of Rayleigh scattering (size
parameters less than about 1) and separates two re-
gions of negative polarization at small and large scat-
tering angles. This bridge of positive polarization at
side-scattering angles may be a common property of
nonspherical scattering and was first found by Perry
et al. [26] in their laboratory measurements for
wavelength-sized nearly cubically shaped NaCl par-
ticles and then by Asano and Sato [13] in their the-
oretical computations for spheroids. Note that the
lower panel in Fig. 2 involves calculations for 400
spheroids in random orientation and was computed

in 50 hours on the IBM RISC Model 37T workstation.

In conclusion, it follows from our calculations and
discussion that the T-matrix method has no funda-
mental limitations on the upper size parameter and
aspect ratio of spheroids. To calculate light scattering
by bigger and/or more aspherical particles, one must
just increase the number of decimal digits with which
the matrix Q is computed and inverted. In particular,
we have demonstrated that, for a given aspect ratio,
the use of extended-precision instead of double-pre-
cision variables in computing the T matrix results in
an increase of the maximum convergent size param-
eter by a factor of 2-2.7. Yet this approach requires
only a negligibly small extra memory, an affordable
increase in CPU time consumption, and practically
no additional programming effort. Using extended-
precision variables, T-matrix calculations of sphe-
roidal scattering can be performed in a substantial
fraction of the resonance region of particle size pa-
rameters (ranging from about 0.1 to about 100)
where the Rayleigh approximation cannot be used
because particles are too large, while the geometrical
optics approximation is not applicable because par-
ticles are too small. Moreover, our illustrative com-
putations show that nonspherical particles can reach
the geometrical optics regime at smaller size param-
eters than surface-equivalent spheres. The results of
this Communication may have important practical
implications. In particular, they make the T-matrix
method applicable in studies of nonspherical tropos-
pheric aerosols in the visible and cirrus cloud parti-
cles in the infrared spectral regions [27-30]. Finally,
we note that numerical instability similar to that for
the T-matrix method was reported by Asano [31] for
his method of separation of variables in the sphe-
roidal coordinate system. Since Asano carried out his
calculations with double-precision arithmetic, it
would be interesting to see whether the use of ex-
tended-precision variables can improve the perform-
ance of the Asano method as well. Apparently, this
problem would also affect Farafonov’s [32,22] ver-
sion of the separation of variables method.

The authors are grateful to B.E. Carlson, A.A. La-
cis, W.B. Rossow, M. Sato, and N.V. Voshchinnikov
for many useful discussions. This work was sup-
ported in part by the Earth Observing System Project
managed by Goddard Space Flight Center in provid-
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Fig. 2. Color diagram of the degree of linear polarization as a function of the scattering angle and size parameter. Calculations for
monodisperse spheres (upper panel) are compared with computations for randomly oriented surface-equivalent oblate spheroids with
the aspect ratio 4 (lower panel). The refractive index is 1.5+ 0.022i.
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